ANALYSIS

1. Based on your observations, what are the identities of your two unknowns? Justify your answer.

2. Use the following equations for light to complete Table 2 for the persistent spectral lines of lithium.

$$c = \lambda v$$
 (Eq. 1)

$$E = hv (Eq. 2)$$

where

c = the speed of light, 3.0×10^8 m/s

 $h = \text{Planck's constant}, 6.626 \times 10^{-34} \,\text{J} \cdot \text{s}$

 λ = wavelength, measured in m

 $v = \text{frequency, measured in sec}^{-1} \text{ or hertz (Hz)}$

Table 2. Spectral Lines of Lithium			
Wavelength		Frequency	Energy
nm	m	Hz	J
460.29			
610.37			
670.79			

3. Write a statement that generalizes the relationship between the wavelength and energy of photons.